Matlab da eeg sinyal analizi yapmam gerekiyor .Ancak bilgisi olan arkadaşlara bir kaç bir sey sormak istiyorum
EEG sinyali tek bir sinyal midir yoksa 5-10 tane gibi farklı sinyalın hepsinin bir arada göstermi midir ?
Kimi yerde yetişkin eeg si şöyle olur diye tek bir sinyal gösteriliyor diğer yandan da
10-20 elektrot sistemine göre büssürü sinyal alnııyor ?
Yardımcı olabilen olursa sevinirim
tesekkurler
Umarım İngilizcen vardır zira çevirmek için vaktim yok. Yine de Google translate kullanabilirsin. Buradaki bilgiler elektrod bağlantı sistemi hakkında başlangıç için yeterli bilgiyi veriyor:
In conventional scalp EEG, the recording is obtained by placing electrodes on the scalp with a conductive gel or paste, usually after preparing the scalp area by light abrasion to reduce impedance due to dead skin cells. Many systems typically use electrodes, each of which is attached to an individual wire. Some systems use caps or nets into which electrodes are embedded; this is particularly common when high-density arrays of electrodes are needed.
Electrode locations and names are specified by the International 10–20 system[31] for most clinical and research applications (except when high-density arrays are used). This system ensures that the naming of electrodes is consistent across laboratories. In most clinical applications, 19 recording electrodes (plus ground and system reference) are used.[32] A smaller number of electrodes are typically used when recording EEG from neonates. Additional electrodes can be added to the standard set-up when a clinical or research application demands increased spatial resolution for a particular area of the brain. High-density arrays (typically via cap or net) can contain up to 256 electrodes more-or-less evenly spaced around the scalp.
Each electrode is connected to one input of a differential amplifier (one amplifier per pair of electrodes); a common system reference electrode is connected to the other input of each differential amplifier. These amplifiers amplify the voltage between the active electrode and the reference (typically 1,000–100,000 times, or 60–100 dB of voltage gain). In analog EEG, the signal is then filtered (next paragraph), and the EEG signal is output as the deflection of pens as paper passes underneath. Most EEG systems these days, however, are digital, and the amplified signal is digitized via an analog-to-digital converter, after being passed through an anti-aliasing filter. Analog-to-digital sampling typically occurs at 256–512 Hz in clinical scalp EEG; sampling rates of up to 20 kHz are used in some research applications.
During the recording, a series of activation procedures may be used. These procedures may induce normal or abnormal EEG activity that might not otherwise be seen. These procedures include hyperventilation, photic stimulation (with a strobe light), eye closure, mental activity, sleep and sleep deprivation. During (inpatient) epilepsy monitoring, a patient's typical seizure medications may be withdrawn.
The digital EEG signal is stored electronically and can be filtered for display. Typical settings for the high-pass filter and a low-pass filter are 0.5-1 Hz and 35–70 Hz, respectively. The high-pass filter typically filters out slow artifact, such as electrogalvanic signals and movement artifact, whereas the low-pass filter filters out high-frequency artifacts, such as electromyographic signals. An additional notch filter is typically used to remove artifact caused by electrical power lines (60 Hz in the United States and 50 Hz in many other countries).[1]
As part of an evaluation for epilepsy surgery, it may be necessary to insert electrodes near the surface of the brain, under the surface of the dura mater. This is accomplished via burr hole or craniotomy. This is referred to variously as "electrocorticography (ECoG)", "intracranial EEG (I-EEG)" or "subdural EEG (SD-EEG)". Depth electrodes may also be placed into brain structures, such as the amygdala or hippocampus, structures, which are common epileptic foci and may not be "seen" clearly by scalp EEG. The electrocorticographic signal is processed in the same manner as digital scalp EEG (above), with a couple of caveats. ECoG is typically recorded at higher sampling rates than scalp EEG because of the requirements of Nyquist theorem—the subdural signal is composed of a higher predominance of higher frequency components. Also, many of the artifacts that affect scalp EEG do not impact ECoG, and therefore display filtering is often not needed.
A typical adult human EEG signal is about 10 µV to 100 µV in amplitude when measured from the scalp[33] and is about 10–20 mV when measured from subdural electrodes.
The EEG recording can be analysed using various programs; e.g., using free open-source toolboxes for Matlab, such as, EEGLAB, Fieldtrip, NBT, SPM, or commercial software packages such as Brainvision Analyzer.
Since an EEG voltage signal represents a difference between the voltages at two electrodes, the display of the EEG for the reading encephalographer may be set up in one of several ways. The representation of the EEG channels is referred to as a montage. Squential montage Each channel (i.e., waveform) represents the difference between two adjacent electrodes. The entire montage consists of a series of these channels. For example, the channel "Fp1-F3" represents the difference in voltage between the Fp1 electrode and the F3 electrode. The next channel in the montage, "F3-C3," represents the voltage difference between F3 and C3, and so on through the entire array of electrodes.Referential montageEach channel represents the difference between a certain electrode and a designated reference electrode. There is no standard position for this reference; it is, however, at a different position than the "recording" electrodes. Midline positions are often used because they do not amplify the signal in one hemisphere vs. the other. Another popular reference is "linked ears," which is a physical or mathematical average of electrodes attached to both earlobes or mastoids.Average reference montage The outputs of all of the amplifiers are summed and averaged, and this averaged signal is used as the common reference for each channel.Laplacian montage Each channel represents the difference between an electrode and a weighted average of the surrounding electrodes.[34] When analog (paper) EEGs are used, the technologist switches between montages during the recording in order to highlight or better characterize certain features of the EEG. With digital EEG, all signals are typically digitized and stored in a particular (usually referential) montage; since any montage can be constructed mathematically from any other, the EEG can be viewed by the electroencephalographer in any display montage that is desired.
The EEG is read by a clinical neurophysiologist or neurologist (depending on local custom and law regarding medical specialities), optimally one who has specific training in the interpretation of EEGs for clinical purposes. This is done by visual inspection of the waveforms, called graphoelements. The use of computer signal processing of the EEG—so-called quantitative EEG—is somewhat controversial when used for clinical purposes (although there are many research uses).
teşekkür ederım cevabın ıcın okuyacağım
sinyali Pencereleme diye bazı başlıklar var
1 . pencereleme matlab da nasıl yapılıyor kod olarak ,araştırdım ama elle tutulur bir sey bulamadım
2 . Hamming window var örneğin bu pencereleme çesitlerinin mantığı nedir acaba
tesekkurler
Biraz geç oldu ama Eeg sinyalinde işleme yapacaksan kullanmak gereken sinyal tam olarak neyi hangi aktivite sırasında analiz etmek istediğine göre değişir. Toplamda 4 eeg dalgası var. Uyku durumundaki birinin veya zihinsel problemlerle uğraşan birinin farklı eeg dalgaları karakteristik özellik gösterir.