< Bu ileti mobil sürüm kullanılarak atıldı > |
Çarpımın Türevi
İki fonksiyonun çarpımının türevi, çarpım kuralı olarak bilinir. Bu kurala göre, f(x) ve g(x) olmak üzere iki fonksiyonun çarpımının türevi şöyle hesaplanır:
(f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)
Diğer bir deyişle, çarpımın türevini hesaplamak için ilk fonksiyonun türevini ikinci fonksiyonla, ikinci fonksiyonun türevini ilk fonksiyonla çarpıp toplarsınız.
Örnek:
f(x) = 2x ve g(x) = x^3 fonksiyonlarının çarpımının türevini hesaplayalım:
(f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)
= 2 * x^3 + 2x * 3x^2
= 2x^3 + 6x^3
= 8x^3
Bu örnekte, f(x)'in türevi 2 ve g(x)'in türevi 3x^2'dir.
Çarpımın türevi, türev işlemlerinde yaygın olarak kullanılan temel bir kuraldır. Fonksiyonların çarpımlarıyla çalışırken bu kuralın anlaşılması, doğru türev hesaplamalarını gerçekleştirmek için çok önemlidir.